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A Hamiltonian formulation is used to investigate irrotational capillary wave dynamics. 
Dissipation is accounted for by putting the wave system in contact with a 'heat bath'. 
The generation of short waves by longer waves is studied. It is found that millimetre- 
wavelength waves tend to be created on the forward face of a steep longer wave, while 
centimetre waves tend to form near the crest. Generation of capillary waves by wind 
waves is investigated. The results are compared with predictions of the Hasselmann 
transport equation. It is found that off-resonance interactions lead to significant 
corrections to the transport theory. The relative importance of three-wave and four- 
wave interactions is studied, as well as the role of triad resonances. For the capillary 
phenomena studied here, the four-wave terms in most cases lead to quantitative, but 
not qualitative, corrections to the three-wave only calculations. However, restricting 
interactions to the neighbourhood of triad resonances can give quite erroneous results. 
Use of a canonical transformation to pseudo-wave variables can greatly reduce 
numerical computation times. 

1. Introduction 
Capillary wave dynamics are of importance for remote sensing (see, for example, 

Donelan & Pierson 1987 and Apel 1994) and for the mechanism of longer wave 
breaking (see. for example, Longuet-Higgins 1992 ; Longuet-Higgins & Cleaver 1994; 
Longuet-Higgins, Cleaver & Fox 1994; Duncan et al. 1994). Recent experiments of 
Jahne & Riemer (1 990) and Klinke & Jahne ( I  992) have studied the spectrum of short 
gravity-capillary waves for wavelengths in the range from less than 0.5 to about 20 cm. 
An important conclusion from these observations is that nonlinear interactions with 
longer waves provide an important mechanism for capillary wave generation. Other 
experiments by Cox (1958), Zhang & Cox (1994), Zhang (1995), and Miller, Shemdin 
& Longuet-Higgins (1992) have lead to similar conclusions. A spectral model based on 
these observations has been proposed by Apel (1994). 

Theoretical analyses of capillary wave generation have been given by Longuet- 
Higgins (1963. 1995) and, using the Hasselmann (1968) transport equation, by 
Valenzuela & Liang (1972), Holliday (1977), van Gastel (1987a, b), and Watson & 
McBride (1 993). Strong interactions lead to short energy exchange times ~ of the order 
of fractions of a second, in sharp contrast to those for longer wavelengths where wave 
groups may propagate for kilometres to hundreds of kilometres. 



88 K.  M .  Watson and S. B. Buchsbaum 

In the analyses cited above, the nonlinear equations were truncated at the order of 
three-wave interactions. The Hasselmann transport equation is obtained from these 
truncated equations by the approximations of cumulant discard, which neglects 
correlation effects from different spectral regions, and weak interaction theory, which 
restricts interactions to triad resonances. 

In the present paper we have three principal objectives. The first is to obtain 
numerical solutions of the truncated three-wave equations, from which the Hasselmann 
(1968) model is derived. This will permit an assessment of the accuracy of this model. 
Our second objective is to investigate the mechanisms of capillary wave generation - 
for example, the position where capillary waves are formed relative to the longer wave 
profile. Our third objective is to include the four-wave term in the equations of motion 
in order to see the relative importance of the three- and four-wave terms. In addition 
to addressing these objectives, we shall describe a technique, using canonical 
transformation theory, that can significantly reduce the computational load for 
capillary wave calculations. 

Our formulation of wave dynamics begins with a Hamiltonian formulation which 
assumes inviscid irrotational flow. An extension of this model is also used which 
incorporates wind input and viscous damping by supposing the wave system to be in 
contact with a ‘heat bath’. 

The formulation of surface wave dynamics in terms of a Hamiltonian has been given 
by Zakharov (1968), Miles (1977), and Milder (1990). This work is reviewed and 
adapted for our present analysis in $2. By considering the wave system to be bounded 
by a rectangular box, the Hamiltonian is expressed in terms of discrete canonical 
variables and provides first-order evolution equations in time. The observations of 
Jahne and his collaborators imply that the capillary spectrum does not extend to 
wavelengths much less than h = $ to f cm. Termination of the variable set in this 
wavelength regime means that the Hamiltonian has a finite set of degrees of freedom. 

Our applications in $3 begin with a study of the Wilton #2 triad and some 
generalizations of this (Wilton 19 15). We next investigate the radiation of parasitic 
capillary waves from a longer wave (Ebuchi, Kawamura & Toba 1987; Perlin, Liu & 
Ting 1993; Longuet-Higgins 1995). Our final application is to the generation of 
capillary waves from a Donelan-Pierson (1987) wind wave spectrum. Here we compare 
the generation process and rates with those obtained by Watson & McBride (1993) 
using the Hasselmann model. 

In $4 we extend the theory by applying a canonical transformation to remove three- 
wave interaction terms from the Hamiltonian which do not involve triad resonances. 
The Lie method of Creamer et al. (1989) is used here. Since the domain of triad 
resonances is limited to relatively short wavelengths, we can remove from the 
calculation all the longer waves. A very substantial reduction in computing time can 
thus be achieved. After integrating the dynamic equations, the inverse canonical 
transformation restores effects of the longer waves. Applications of the canonical 
transformation technique are given in $5.  

The formal theory here will be developed for waves in two surface dimensions; 
however, most of the applications described in this paper will be to waves in a single 
surface dimension. Part 2 will address in more detail wave phenomena in two surface 
dimensions. 
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2. Hamiltonian dynamics 
In this section we review the Hamiltonian formulation of surface wave dynamics and 

put this into a form convenient for our calculations. 
Our ‘ocean’ is confined to a rectangular box of dimensions X and Y with area 

d, = XY.  A rectangular coordinate system is used with the plane of the undisturbed 
water surface at z = 0 and points above this surface at 2 > 0. A horizontal vector in the 
surface z = 0 is written as x = (x,y). The flow is assumed to be irrotational and 
inviscid. The velocity potential is @(x, z) .  The vertical displacement of the surface at x 
is {(x). The velocity potential evaluated at the water surface is 

Q(x) f @(X> ax)). (2.1) 
The vertical and horizontal components of velocity at the surface z = [ are 

(2.2) 
?@ 1 

?t 
w = - D$, u = V@,=< = V+ wV{. 

The operator V here is the gradient operator acting in the (x, y)-plane. The Hamiltonian 
is the energy of the wave system (see Zakharov 1968; Miles 1977). Using the notation 
of Milder (1990) and normalizing energy and action to unit water density, we write 
this as 

2 = - [$I?$ +gc2 + 27( 1 + (V{)2))”2 - 271 dx. (2.3) 2 ‘S 
Here g is the acceleration due to gravity and 

T = 7.5 x m3 s ~ ‘  

represents a nominal value for the surface tension parameter. Following Milder (1990) 
we have 

K f [ 1 + (V<)2] d - 05. v. 

? < -  82Y (‘$ - 8.X 
c‘t S$’ ?t s< . 

The field quantities $ and { represent canonical variables and the Hamiltonian 

(2.4) 

equations of motion are 

It is convenient to Fourier expand the field amplitudes in the area do: 

I I 
$(x) = C [ V,./(2~d~)]l’~ [bk eik.x + c.c.], 

{(x) = iC [l/(Z.d, &)]1/2[bkeik.x-~.~.]. 

k 

k 

We have written 

as the phase velocity for a linear wave having wavenumber k and angular frequency 

wk = [k(g+7k2)]”‘. (2.7) 
The discrete wavenumber vectors k are of the form 

(2.8) 
27t 21s 
X 

k, = kosns,  k,, = -, k, = k,,n,, k,, = ?, ns, n, integer. 
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The wavenumbers here will be restricted to the range 
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Ik,l < k,,? Ik,l < k,,. 
which will be specified in detail later. We thus have a finite set D of wavenumbers. 

(2.5) : 

The b are ' action amplitude' variables. Poisson bracket relations for the action 
amplitude variables are 

Canonical action-angle variables Jk  and 0, are related to the Fourier amplitudes in 

(2.10) b k -  - Jl/2e-iflfi. k 

ab, ab, ahk ah, {b,, b,} = C [-----I aep a4 a4 aep = 0, {bk, bz,} = -isk-,. (2.11) 

For functions G and H of b we may use an alternative form for the Poisson bracket, 

{G(b) ,H(b)}  = - i C  
P 

Hamilton's equations of motion can be expressed as 

(2.12) 

(2.13) 

or b, = {bk, %>. (2.14) 

Following Milder's (1 990) prescription, we expand the Hamiltonian in ascending 
orders of the field variables: 

x ( J ,  6') = %(.I) + e&(J, 6') + e2&(J, 19) + . . ., (2.15) 

where 6 is a formal expansion parameter which will later be set equal to unity. 
Expressions for the terms above, in terms of @ and 5, have been given by Milder (1990) 
and Watson & McBride (1993). Expressed in terms of J, 6' these are 

= - C {&+[+, h(k, I ,  m) sin (8, + 6',+ 6,) 
k ,  I ,  m 



I 2k. lm - n + k .  nl- m + k .  ml- n 
- 7/4 (4 4 K ,  KO' 

(2.18) 

The expansion (2.15) of the Hamiltonian is ordinarily truncated after either the three- 
wave term & or the four wave term X2. Since the equations are nonlinear, each of these 
terms actually describes three-, four-, five-, . . . wave interactions. The notation used is 
convenient, since it represents their lowest-order interactions. 

To account for viscous damping of the waves we imagine our wave system to be 
in contact with a heat bath with which energy can be exchanged. Viscous damping 
and/or wind input energy may thus be phenomenologically incorporated into our 
equations in a manner consistent with the Hamiltonian description. This is described 
in Appendix A. 

The equations of motion may readily be obtained using (2.14). Dimensionless wave 
slope amplitudes ak are more convenient for computation than the action amplitudes 
h,. These are related by the equation 

hh = -i(d V,/2)1'2 ah e-""k'/k. (2.19) 

The vertical displacement of the surface. expressed in terms of these amplitudes, is 

(2.20) 

Expressed in terms of the slope amplitudes, the equations of motion are 

+ el [pa,] = c3 &(a; k )  + e4 q ( a ;  k) ,  (2.21) 

where we have truncated after the four-wave term. Here 

+ 2h'kk+1-p f (p, k ,  I )  a P I  a* e'(wk+'"l-wp)t + Sk+r+p h(l,p, k )  a; a; eifw~+'nil+wp)t. (2.22) 

is of third order in the a and is rather lengthy so will not be given 

,8 = 2vk', (2.23) 

where v is the kinematic viscosity, given here a nominal value of 1.3 x lop6 m2 s-'. The 
coefficients el, s3, s4 in (2.21) are each taken to be zero or unity, depending upon 
whether we wish to keep the corresponding term in our calculations. 

The expression for 
explicitly here. The quantity p describes viscous damping, 



92 K.  M .  Watson and S .  B. Buchshaum 

The spectrum of action density F(k) is obtained from the relations 

J k / &  = A2KF(k), (2.24) 

where Jk  is the wave action introduced in (2.10) and 

A 2 K =  ($)($). (2.25) 

For closely spaced Fourier wavenumbers we can take the continuum limit of (2.24): 

k 

The spectrum of vertical displacement of the surface is 

Y(k)  = F ( k ) / K .  (2.26) 

For our applications it will be convenient to consider a grid that is imbedded in the 

x = J ,  s,, Y = 4, s,, (2.27) 

area 4. We suppose this grid to have dimensions S, and S,, where 

and .& and 4 are positive integers. Wavenumbers in this grid we write as 

(2.28) K, = ksz(no + n,), n, = 1,2, . . ., M,, 

Mu, K, = ksyn,,  n, = - M  , ,...) 0 ,...) 
Here 

(2.29) 

and no, M,, M ,  are positive integers to be chosen as appropriate for specific 
calculations. Our wavenumber restriction in (2.28) implies that the principal direction 
of propagation is the positive direction along the x-axis. 

As noted, the wavenumbers (2.8) form a finite set D. The subset (2.28) form a set D,. 
Wavenumbers in D, but not in D,, are said to belong to the set D,. The relations (2.28) 
imply that if we set 

a, = 0,  t = 0, kEDS, 
then 

a,(?) = 0, all times, k E D,. (2.30) 

This follows from the &function restrictions on wavenumber triads and quartets in 
(2.2 1) : for example, 

Sk+,-, = 0 when L, P E  D, and kE D,, 
etc. Because of (2.30) may thus ignore the set D ,  and integrate (2.21) only for 
wavenumbers in the set D,. These waves will of course be periodic in the larger area 
do. This results from the homogeneity of the Hamiltonian within this larger area. 

The equations (2.21) for the set D, now have the form 

(2.3 1) 
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with a corresponding expression for q. Because of the restriction to K,, L,, P, > 0, the 
third term in (2.22) vanishes. A similar modification is made in the four-wave term q. 
Because of (2.30) we can assume that all modes in D, have zero amplitudes. 

The point of the above choice of a computational grid will be seen in $4. By means 
of a canonical transformation we can remove interactions from (2.32) not involving a 
triad resonance. The inverse canonical transformation generates numerical values for 
those mode amplitudes in D,?. 

To calculate the wave spectrum in the grid (2.28) we replace (2.25) by 

For applications in one surface dimension we write, as an approximate model, 

A2K=2KAKA6, AK= - , A 6 = ~ / 4 .  63 

(2.33) 

(2.34) 

The dimensionless 'saturation' spectrum is, in one or two dimensions, 

B(K) = B(k, 0,) = K4Y(K), (2.35) 

where 6, describes the direction of Kwith respect to the x-axis (for applications in one 
dimension, we set 6 ,  = 0). 

2.1. Triad resonances 
A triad resonance occurs for those terms in (2.32) for which 

f' = loK W L  - up[ < E r e s .  (2.36) 

In the Hasselman (1968) theory, for which the area .do is presumed to be arbitrarily 
large, cres = 0. Only those interactions in exact resonance are then of importance. In a 
theory such as ours with discrete wavenumbers, we might expect eyes to represent some 
characteristic rate of energy transfer among modes. 

In the four-wave term q explicit time-dependent exponentials of the form 

exp [i(w, -t w,  2 w, !C m p )  t ]  

appear. A quartic resonance occurs when 

lo& k (01 k w, k (opI < E:ra, (2.37) 

where ties = 0 in the Hasselmann (1968) theory and is again (perhaps) determined by 
some evolution rate from (2.31). 

and 
the role of triad resonances in this term. For waves in one dimension, corresponding to 
Mu = 0 in (2.28), determining the location of triad resonances is straightforward?. 
We must first specify the high-wavenumber cut-off 

Of primary interest for our study of capillary wave interactions is the term 

k,, = k, ,M,  G 21t/h,. (2.38) 

As a consequence of this lower limit on wavelength, for a triad resonance to occur all 
three waves must lie in the domain D,, a subset of the set D (2.8): 

A, > A > A,. (2.39) 

t The resonance domains in one and two dimensions were determined from contour plots in an 
(LT, LJ-plane of w K k w L - w p ,  P = K k  L, for a given K.  For applications of the method of $4, a 
further test was made by printing the smallest values off' outside the resonance domain. 
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A, (cm) A, (cm) S, (cm) no Grid 

213 10 10 0 GI 
213 10 20 1 G, 
1/2 12 12 0 G3 
114 26 To be specified 0 G, 

TABLE 1. Description of some resonance domains and related grids used for our calculations. Here 
A, is the short-wavelength cut-off, A, is the long-wavelength bound on the resonance domain, and S, 
and no are defined by (2.27) and (2.28) 

In table 1 we show values for A,, A, and S, to be used for our applications. For those 
calculations presented in 93 for waves in two dimensions, the specification of the 
resonance domains given in table 1 is adequate. 

It is important to emphasize that all three members of the wave triad must lie in the 
domain D, for a resonance to be possible. Wavenumbers not in D, are said to be in 
the set D,. In $ 5  we shall extend the calculations to include the entire domain D. 

2.2. Computational details 
Integration of the coupled equations (2.31) was done using the Bulirsch-Stoer method, 
as described by Press et al. (1992). This proved to be a fast stable algorithm for these 
equations. The calculations presented here were done in double precision on a Power 
Macintosh computer (for a check, selected calculations were repeated, with an 
independently written code, on a Sun workstation). The complex slope amplitudes 
were printed to files at specified times over the duration of the integration. Also, at 
specified times, values for the spectrum B and the energy (value of the Hamiltonian) 
were printed to a file. The quantity B was printed in exponential format to three 
significant figures and the energy in exponential format to four significant figures. 

With c1 = 0 in (2.31) energy is conserved, which gave a useful check of numerical 
accuracy. When el = 1, viscous damping led to energy decrease of up to 10% in our 
calculations. 

Numerical calculations were started at time t = 0 in one of two ways: a specific file 
of initial amplitudes could be read ; alternatively, a wind-wave spectrum could be 
generated using the Donelan-Pierson (1987) spectrum for the laA, with a random 
number generator to give the phases. The set of input amplitudes was saved to a file. 
This permitted repeating calculations with a given set of input amplitudes. 

To provide insight into the significance of triad resonances, a ‘filter’ was introduced 
into T3 (2.32). This ‘filter’ drops from the summation in T3 the first or the second 
term if 

f- > A i m  or f+ > . h i m ,  (2.40) 

respectively, where f’ is defined by (2.36) and him is an adjustable parameter. The 
corresponding term is also dropped from the Hamiltonian term 3 (2.16) so the 
truncated equations remain a Hamiltonian system. 

A similar ‘filter’ was introduced into X2 and &. 
To investigate the significance of ‘ off-resonance ’ terms&, was initially given a small 

value. The calculation was repeated with increasing values until no change was found 
in the values of B(K), to the above-described printed accuracy, after the last time 
interval. (This proved to be a more stringent test than a visual inspection of plots of 
the wave displacement <(x, t )  and/or wave slope.) We shall adopt the convention of 
referring to thatf,,, at which no further change in B is found as giving an ‘exact’ result. 



Interaction of capillary wme.\ with longer I I  aw\.  Part 1 95 

To check the accuracy of the four-wave term q, two calculations were made with 
tl = 0 and the results compared with similar previously published calculations. The first 
was of the Benjamin-Feir (1967) (Benjamin 1967) instability, comparison being with 
the simple model of Whitham (1974). The second calculation was of the propagation 
of the ‘Feir soliton’, studied by Cohen, Watson & West (1976). 

3. Applications 
In this section we describe several applications of the theory presented in 92. 

3.1 . Wilton ripple instchilit?> 
The Wilton ‘ n  = 2’ instability is represented by the resonant triad (Wilton 1915; 
Henderson & Hammack 1987): 

k ,  = 2k,.  (3.1) 

We shall use grids G, and G, (see table I). which slightly displace the triad 
wavenumbers to 

k,  = k ,  = 251.3 m-’, k, = 502.6 m-I. (3.2) 

(3.3) 

(3.4) 
McGoldrick (1965) has given a simple analytic solution for the amplitudes a,, ab, a,  

for the special case that at time t = 0 N, = ab, ac = 0.  Because of the value of the 
mismatch (3.4) setting ,fiim = 10 s-’ ‘turned-off’ the harmonic triad and permitted 
checking our calculations with McGoldrick’s analytic expression. 

Using grid G, with (see equation (2.31)) el = c4 = 0, e4 = 1 and with initial 
amplitudes 

a, = 0.01, 

The resulting resonance mismatch. 

Aft), = W ~ - ~ W ,  = -0.6 S’, 

is not significant here. A related -harmonic’ triad has a wavenumber 

k,, = k , + k ,  = 753.9 m-I, d o ,  = ~ t ~ ~ j - ~ l ~ c - ~ l ) ~ ,  = 18.3 s-’. 

a, = 0.2.5, a, = 0.02, all other a in the range lop4 to lo-“, 

we show in figure 1 ( a )  the magnitudes of the slopes at t = 0.1 s. At later times mode 
d exceeds that of a or c, but at r = 0.25 s mode d slope is again the smallest of the three, 
etc. Slow growth of other modes is seen, as these ‘feed off’ modes a ,  c, d. This growth 
continues at later times. (ForJji, = 10 s-l, growth of these other modes was not seen.) 

The effect ofJji, was investigated. For,Li, = 20 s-l, the growth of modes c and d is 
very similar to that of figure 1 (a) .  The value,f,,. = 50 s-’ gave an exact result (recall 
our definition of ’exact’ in this context, given in the previous section). We note that the 
resonance mismatch (3.4) was not large enough to significantly limit the growth rate 
of mode d. 

Figure 1 (h)  shows the same calculation as that of figure 1 ( a ) ,  except that now the 
four-wave term T j  in (2.31) is included (e, = 0, t, = eq = 1). Continuing the calculation 
to t = 0.25 s showed modest effects of q. The choice ,f;iT,l 3 20 s-l in was 
satisfactory. 

The Wilton instability was also studied in two dimensions using the grid G, with 
S, = S ,  = 0.1 m, M ,  = 15, M ,  = 2 (2.28). Excitation of modes for InJ > 0 was 
observed. 
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FIGURE 1 .  (a)  Slope magnitudes for the Wilton triad amplitudes at t = 0.1 s. Modes and initial slope 
amplitudes are described by (3.1) and subsequent equations. (b)  As (a) except that four-wave 
interactions have also been included. 

We conclude that for the Wilton instability a value ofhim = 50 s-l gave exact results. 
The increase ofhi, from 10 to 20 s-l ‘opened up’ the d-wave channel. Increasingf,i, 
beyond 50s-’ did not open up new channels for energy flow (by our criterion of 
exactness). If there were only the three modes a, c, d, we would find an oscillatory 
transfer of energy among these. Because of the other modes available, energy is fed to 
these from the a, c, d modes. A sufficiently large number of modes is required for 
spectral transport by this mechanism, but a resonance does not seem necessary. 

3.2. Radiation of parasitic capillary waves 
Generation of short capillary waves (wavelengths of a few mm) has been observed by 
Ebuchi et al. (1987), Perlin et al. (1993), and Zhang (1995). A physical theory for this 
has been given by Longuet-Higgins (1 995), who chose a finite-amplitude Stokes wave 
as the radiating source. 
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In contrast to the model of Longuet-Higgins (1995), who considered a quasi- 
stationary state, we begin our calculation at t = 0 with a given Stokes wave and let the 
system evolve in time. We describe a sequence of Stokes waves of increasing slope 
(defined as the maximum value of I?</c'xl). The parameters for these waves were chosen 
to match the regime of waves considered by Longuet-Higgins (1995). 

For a Stokes wave slope of 0.2 or less no significant generation of millimetre- 
wavelength capillary waves was found. 

For the calculation of figure 2 we start at t = 0 with a 10 cm wavelength Stokes 
wave of slope 0.25. We include dissipation (t, = t ~ : ~  = 1, e4 = 0) and use the grid G, 
with S,r = 10 cm. In figure 2 ( a )  we show as the heavy line the wave displacement 5 at 
t = 0.3 s. 

To display wave slope in our work we use two filters, which pass waves only in the 
indicated bands : 

E;, : 0.25 ,< h ,< 0.67 cm, 
F,,,: 0.67 ,< h ,< 2.5 em, (3.5) 1 

The first filter gives the slope resulting from the Longuet-Higgins (1995) capillary 
waves. The waves passed by the second filter are of interest for some remote sensing 
applications. 

The light curve in figure 2(u) represents wave slope ?{/(?.x output from the filter F,. 
Removing the dissipation term from (2.31) had very little effect at t = 0.3 s. This wave 
system is very similar to those calculated by Longuet-Higgins (1995), with waves of a 
few mm wavelength on the forward crest of the Stokes wave. In figure 2(b) we show 
the same wave at the same time as in figure 2 ( a ) ,  except that now we exhibit the slope 
output from filter erL. Curve (i) represents the displacement as seen in figure 2(a) .  
Curve (ii) is the slope output from filter &. We note that in this band the slope is more 
centred under the wave crest. 

For curve (i i i )  in figure 2 ( h )  the calculation was repeated with a short-wave cut-off 
A, = + cm and S,. = 10 cm. Curve (iii) represents the slope output from filter F,, but 
displaced upward by 0.2. For curve (iv) the calculation was again repeated, but with 
a short-wave cut-off A,. = $ cm and S,,. = 10 cm, and representing the slope output from 
filter F,, but displaced by 0.4. 

Extending the numerical calculation to very short wavelengths considerably increases 
the computational burden. This is particularly the case if the long-wave limit A, is then 
increased to include the entire triad resonance domain. The implication of figure 2 (b) 
is that we can obtain a fair description of the longer wave field without including the 
shortest waves in the calculation. 

In figure 2(c) we show, again at t = 0.3 s, the result of superimposing at t = 0 the 
Stokes wave of figure 2(u)  on a sine wave of 40cm wavelength. (The canonical 
transformation technique to be described in 54 was used for this calculation.) For 
figure 2(c) the 40cm sine wave was given a slope of 0.3. The heavy curve is 
displacement and the light curve is slope output from filter F,. In addition to the 
vertical displacement of the Stokes wave, a significant distortion and wavelength shift 
due to strain are seen. The fine-scale surface roughness is also modified. When the 
40 cm wave has a slope of 0.1 or less, the principal effect is just a linear superposition 
of the two wave systems. 

Extending the calculation of figure 2 to t = 2.0 s does not greatly change the wave 
system. With dissipation 'turned off', the capillary wave field contained somewhat 
more noise. 

For the calculations shown in figure 2 the minimum value o f j i i ,  required for an 
exact result was 400 s-l. This almost 10 times larger than the value needed for the 
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FIGURE 2(a-c). For caption see facing page. 
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FIGURE 3. ((I) Wave system at r = 0.2 s evolved without dissipation from an initial Stokes wave of 
8 cm wavelength and slope 0.3. The light curve is cz (3.5) filtered slope. (h)  As ((I) except that three- 
and four-wave interactions are included. 

Wilton system. The larger value offi,, needed here is presumably a result of phase 
locking, driving waves at rates far from their linear frequencies, and also from 
extension of the calculation to shorter higher-frequency waves. 

For figure 3 ( a )  we have started the calculation at t = 0 with the Longuet-Higgins 
Stokes wave of 8 cm wavelength, a slope of 0.3, and S, = 8 cm. The results were 
calculated without dissipation (6, = cq = 0, t3 = 1) and the time for the wave displayed 
in figure 3(a)  is t = 0.2 s. The heavy curve is vertical displacement and the light curve 

FIGURE 2. (a) Wave system at r = 0.3 s evolved with dissipation from an initial Stokes wave of 10 em 
wavelength and slope 0.25. Heavy curve is surface displacement and light curve is F, filtered slope 
(3.5). (b)  As (a) except that light curves represent slope output from filter F;, (3.5). Three slope curves 
are calculated with respective short-wave cut-offs of 0.25, 0.5, and 0.67 cm, as described in the text. 
The slope curve (iii) is displaced upward by 0.2, curve (iv) by 0.4. (c) Same Stokes wave as in (u), but 
superimposed on a 40 cm wavelength sine wave of slope 0.3. 
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FIGURE 4. The Donelan-Pierson (1987) dimensionless saturation spectra for wind speeds of 
4 m s-' (dashed curve) and 6 m s-' (solid curve). 

is the 4 filtered slope. Figure 3(b) shows the same wave system at t = 0.2 s, but 
calculated with three- and four-wave interactions (el = 0, e3 = c4 = 1). The four-wave 
interaction T4 has increased the noise level of the rather simple Longuet-Higgins (1995) 
pattern arising from T,. Although individual crests can be identified with those of figure 
3(a), additional waves generated by & appear to give rise to an interference pattern. 

For the steep wave system of figure 3 a valuef,,, = 600 s-' was required for an exact 
result. (If dissipation had been included, Aim = 400 s-' would have been adequate.) 

3.3. Wind wave spectra 
As mentioned in the Introduction, calculations of capillary wave generation from a 
spectrum of longer wind waves have been published by Valenzuela & Liang (1972), 
Holliday (1977), van Gastel (1987a, b), and Watson & McBride (1993). These 
investigations have all used the Hasselmann (1968) radiative transport equation, In 
order to provide an assessment of the accuracy of the Hasselmann approximation, we 
shall repeat such calculations by integrating equations (2.3 1). We emphasize that the 
Hasselmann equation used by the above authors was derived from equations (2.31) 
with the four-wave term dropped (e, = 0). 

For these calculations we generate an input file from the Donelan-Pierson (1 987) 
spectrum for the magnitudes (aK(. A random number generator is used to assign phases 
to these initial amplitudes. The input files are saved for re-use when we wish to compare 
different calculations (for example, the dependence on him). 

In figure 4 we show the Donelan-Pierson value of B(K,O), see (2.35), in the 
downwind direction for wind speeds of U,, = 4 and 6 m s-l. The sharp cut-off at high 
wavenumbers is not observed (see, for example, Jahne & Riemer 1990 and Zhang 
1995). The extension of the physical wave spectra is attributed to hydrodynamic 
generation of the shorter waves. 

In figure 5(a) we show for a wind speed U,, = 4 m s-' the saturation spectrum 

FIGURE 5. (a) The satuation spectrum for U,, = 4 m s-' with dissipation and at t = 0.2 s. (b)  As (a) 
except that the calculation was extended to shorter wavelengths and the time is 1.6 s. (c)  As (a) but 
calculated using three- and four-wave interactions. 
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B(K, 0) from (2.35), using (2.34), at time t = 0.2 s. The grid G, (table 1) was used with 
A, = f cm and including dissipation (el = c3 = 1, c4 = 0). Five realizations of the wave 
field were averaged to obtain B. On comparing with figure 4 we note the extension of 
the spectrum to lower wavelengths, as anticipated. A characteristic time for generating 
the capillary waves is about 0.1 s. No dramatic change is found when the calculation 
is extended to 1.6 s. (A greater change would have been seen, however, if there were not 
dissipation.) For figure 5(b) the short-wave cut-off was extended to A, = cm (again, 
el = e, = 1, e4 = 0) and the time is 1.6 s. We see that there is negligible excitation for 
K > 1300 mpl, consistent with the observations of Jahne & Riemer (1990). 

For the calculations of figure 5(a ,  b) a value offizm 3 100 s-l was required in (2.40). 
A value this large implies that energy transfer occurs through channels not available 
in the Hasselmann (1968) theory. 

For figure 5(c)  the calculation of figure 5(a)  was repeated with the same initial 
amplitudes, except that the four-wave interaction was included (el = e3 = e4 = 1). The 
time is again 0.2 s. Figures 5(a)  and 5(c )  differ in detail, but the effect of is not 
dramatic. 

Figure 6 shows the development of the wave spectrum in two surface dimensions and 
for a wind speed U10 = 6 m spl. The grid G, of table 1 was used, with S, = S, = 12 cm 
and including dissipation (t, = e3 = 1, e4 = 0). A value off,,, 3 100 s-l was required 
for an exact calculation at t = 1 s. Five realizations were averaged to give the spectra 
shown in figure 6(a), where the time is 0.2 s. The time for figure 6(6) is also 0.2 s, but 
these data were calculated with jiim = 20 s-'. The dramatic effect of a larger Aim in 
opening new channels for energy transport in wavenumber space is apparent. 

We now describe a more detailed comparison with the Hasselmann model. The 
Hasselmann (1968) transport equation for three-wave interactions and inviscid flow is 
of the form 

-- dB(k) - a(k) - b(k) B(k). 
dt 

Here a(k) represents the rate of wave generation at k and b(k) the rate of decay due 
to transport of energy away from k (there is no effect of viscosity in (3.6)). Since a and 
b are themselves dependent on B(k), (3.6) is an integral equation. Most applications, 
such as that of Watson & McBride (1993), have evaluated a and b at time t = 0 when 
it is assumed that B(k) is known. (Watson & McBride also used the Donelan-Pierson 
spectrum to provide B.) 

To make a comparison with our present calculations we evaluate the dynamic 
generation rate as 

(3.7) ~- AB(k)  - B ( k ) t  = T - B ( k ) t  = 0 
- 

At T 

We identify (3.7) with the term a(k) of (3.6) since initially there is little wave energy to 
lose from the capillary regime. For the evaluation of (3.7) the calculation was done in 
two surface dimensions with A, = 0.5 cm, S, = S, = 10 cm, no dissipation (el = c4 = 
0, e3 = 1, recall that (3.6) has no dissipation), and the time T = 0.2 s. These parameters 
match those of Watson & McBride (1993), where the triad resonance conditions in 
(3.6) restrict the interacting wavenumber domain to be the same as that chosen for 
integrating (2.31). Wind speeds Of 4 and 6 m spl were considered and five realizations 
were averaged to give (3.7). 

The values of a(k) were taken from data of Watson & McBride (1993) (for a 
comparison, see figure 3 of their paper). The quantity a has sharp peaks at k = 550 m-l 
for U,, = 4 m s-' and at 700 m-l for U,, = 6 m s-l. Owing to the triad resonance 
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FIGURE 6 ( a )  Two-dimensional spectrum at I = 0 2 5 for a wind speed of 6 m s-' 
( h )  A\  ( L I )  except that f,,,,, = 20 s ' 
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Wind speed Hasselmann rate Dynamic rate Three- and four-wave 
(m s-') (Wm-2) (W m-2) (W m-2) 

4 1.4 x 10-5 1.0 x 10-4 1 . 1  x 10-4 
6 3.8 x 10-4 6.5 x 10-4 - 

TABLE 2.  The energy transfer rates calculated by the Hasselmann theory and by the dynamic theory 
of this work. The rates are calculated using (3.6), (3.7), and (3.8) as described in $ 3 .  The three- and 
four-wave rate was calculated using both terms T, and T, in (2.31) 

restriction little wave excitation occurs away from these peaks. In contrast to this, 
excitation described by (3.7) occurs over the broad wavelength interval k > 250 m-l. 
This can be seen on comparing figures (4) and 5(a). 

We have calculated the linear wave energy transfer rate from (3.7) as 

ED = C po VE B(k) A2K/k3, 
nxx "y 

where po is the density of water, A2K is defined by (2.33), and n,,n, describe discrete 
mode numbers. A similar expression was used to calculate the energy transfer rate EH 
from (3.6). The resulting values are shown in table 2. 

For U,, = 4 m s-l the dynamic rate ED is substantially larger than the Hasselmann 
rate EH.  The Hasselmann rate is quite small at 4 m s-l, presumably due to limited 
source waves matching the triad resonance condition. At U,, = 6 m s-l the two rates 
are comparable. The difference in the two rates for both wind speeds seems associated 
with the excitation of a broad wavenumber band when the triad resonance condition 
does not apply. 

For reference, we note that the total wave energy (as given by the value of the water 
density times the Hamiltonian/per unit area) is 1.46 x lo-' j m-' at U,, = 4 m s-l and 
1.85 x lop2 j mP2 at U,, = 6 m s-l. From table 2 we see that only a very small fraction 
of the total wave energy has transferred to the capillary regime during the 0.2 s of the 
calculation. 

in (2.31) 
( E ,  = 0, e3 = c4 = 1). The resulting energy transfer rate is shown in table 2. The four- 
wave terms are seen to lead to very little change in the rate. 

The calculation at U,, = 4 m s-l was repeated using the four-wave term 

4. Canonical transformation of variables 
As the 'fetch' (i.e. the dimension of 4 along the x-axis) is increased, the number of 

modes required increases and the computational burden becomes greater. In the 
present section we attempt to mitigate this problem by use of a canonical 
transformation technique. 

The objective of canonical transformation theory for nonlinear oscillators is to 
choose a new set of variables such that the nonlinear interaction terms in (2.3 1) vanish. 
This was achieved, for example, in the work of Creamer et al. (1989). Unfortunately, 
the presence of triad resonances precludes our doing this here in a straightforward 
fashion (an excellent review of this subject was given by Chirikov 1977). To work 
around the complication due to triad resonances, we follow the prescription of Meiss 
& Watson (1978) and Watson & McBride (1993), whose description of the canonical 
transformation we follow closely. Because we now require more detail than was given 
by these authors, we repeat some of their analysis. 
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We propose to make a transformation to new canonical action variables Ik, $k (for 
a discussion of canonical transformation theory see, for example, Goldstein 1969) : 

Jk ,  8k I k ?  $k‘ (4.1) 

(4.2) 
The waves associated with the new variables will be called ‘pseudo-waves’; those 
associated with (2.10) will be called ‘physical waves’. The transformed action 
amplitudes are 

(4.3) 

The transformed Hamiltonian will be 

H(I7 $1 = %(J, 0 

/j - IlIze-i$k. 
k -  k 

The transformation (4.1) will be carried out as a continuous Lie transformation 
(Creamer et al. 1989). We choose a parameter A, 

O < A < l ,  

and define canonical variables Q(A),  P(A) such that 

Qk(0) = Ok, pk(o) = Jk ,  Qk(1) = $k? pk(l) = Ik. (4.4) 
Equations to determine these variables are 

where WO = WW7 Q<A>> 

is an appropriately chosen generating function. Related action amplitudes are 

Bk(h) = ~;/2e-’Q&, (4.6) 

(4.7) 

satisfying the Poisson bracket relations 

{Bk(A), Bk’(h)) = 0, {Bk(h), B:’(h)} = -i8&k. 
For integration of the transformation equations, we shall find that the form 

i3B 2 = {Bk, R)  
ah (4.8) 

is more convenient than (4.5). 

in c 
In the spirit of the expansion (2.15) we obtain from (4.5) and to the required order 

1 Jk  = Ik-~/:dA‘{Pk, R)  = I , - C A J ~ - C ~ A ~ I ~ + O ( C ~ ) .  
(4.9) 

I 

Here 

The prescription of the Kolmogorov ‘super-convergent ’ perturbation theory (see 
Chirikov 1977) is to first make the transformation 

J - I ,  8 + 6  
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in the Hamiltonian. This leads to 
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H,(I,O) = ~ ( I - c A I - ~ ' A ~ I , ~ ' )  = ~ n ( I ) - c : C ~ k A I k + € ~ ( I , e )  
k 

8% 
- c2 C -Ark + e2X2(I,  6') - c2 C wk AzIk + O(e3), (4.11) 

k "k k 

where we have used the relation 

-- - W k .  
a 3  
aIk 

The next step is to split into non-resonant and resonant parts, 
2 1  = + (4.12) 

The separation of Xl into non-resonant and resonant parts is somewhat arbitrary, 
except that SIN must contain no terms for which f' orf- (2.36) is very small. We shall 
here define (4.12) by the condition that HIR contains only wave modes in D, and each 
term in qN contains at least one wave mode that is in D,. 

The non-resonant part is eliminated from (4.11) by proper choice of R: 

k 

Using (4.13), we obtain then for (4.1 1) 

1 HZ(I3 6 )  = &(I)  + eHiR(I, 6') + cz&T + O(e3), 

The next step in the Kolmogorov method is to average (4.1 1) over all angles 0 
an average we represent by an overbar, so that for a function L(I,O) we write 

L(I, 8)  = L(I) + L(I,8). 
The averaged quantity (4.14) is then 

4.14) 

Such 

Hn(I )  = H ,  = &$-t-e2Z&,, (4.15) 
where we have noted that 

The last step is to express 8 in terms of $I in (4.11): 

Here 

3gR = 0, F I k  = 0. 

H(I,$) = HI(I,$-cA$) = Hn(I)+eHlR(I, $)+E~H, ( I ,$ )+O(E~) .  (4.16) 

a H I R  Hz(I,  $1 5 z!r - C -A$&. 
k ' $ k  

The required generating function R to give the relation (4.13), expressed in terms of 
the action amplitudes, is 
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where r and h are defined by (2.17). The reason that we do not tolerate terms 
containing a triad resonance is evident from the structure of (4.17). To be specific, at 
least one of the wave numbers k, E ,  m in (4.17) must lie outside the resonant domain 
D,; that is, in the domain D ,  Using (4.17), the transformation (4.8) is seen to be of 
the form 

We have now completed the first step in the Kolmogorov 'super convergent' 
perturbation theory. The next step would be to perform a second canonical 
transformation to remove the terms from H ,  not involving quartic resonances. (A 
clear description of this method has been given by Chirikov 1977.) Carrying out further 
steps in the perturbation theory is beyond our present scope. We shall instead split H ,  
into two parts : 

H ,  = H,, + H,,,. (4.19) 

The term H2,  contains only wave modes in D ,  and each term in E l z R  contains at least 
one wave mode that is in D,. We shall drop H L R  from (4.16) and adopt 

H(l,  $1 zz H()(l)  + sH1,(l, 0) + E2H,R(1? $1 (4.20) 

as our Hamiltonian. We note that the only contribution to H,, comes from X,, since 
the additional terms in H ,  must contain at least one wave mode not in D,. With the 
simplification resulting from (4.20) we have lost the four-wave interactions for the 
longer wavelengths outside D,. Because our primary interest is with three-wave 
interactions for capillary wave phenomena within D, having very short interaction 
times, this approximation for the pseudo-wave amplitudes seems acceptable. For those 
longer wavelengths outside D,, the approximation (4.20) is identical with that used by 
Creamer et al. (1989). 

4. I .  The psetido-wave angular frequency 
From (4.15) we obtain the angular frequency of the free pseudo-waves as 

(4.21) 

Introducing this represents an important step in the Kolmogorov method, since errors 
in the arguments of time-dependent phases of the waves will tend to destroy phase 
relations among Fourier components of wave structures. 

The frequency (4.21) depends upon dynamical action variables and thus is in general 
time dependent. It turns out, however, that the time dependence is very weak for our 
applications. The reason for this is that for a wind wave spectrum the predominant 
contribution comes from those modes which are in D, - in fact, from the smallest 
wavenumbers. When a wavenumber ZED, it follows from (4.20) that the corresponding 
action variable ZI is a constant. 

To evaluate ASZ, (which is linear in the I / )  we chose a Donelan-Pierson-Jahne model 
(similar to that given by Ape1 1994) to provide the spectrum Y(l) and thus the action 
variables I/.  The evaluated frequency was fitted numerically for 63 < k < 1000 mpl to 
a Fourier series in the angle 0, between k and the wind velocity vector Ulo:  

ak = 6 ~ , f k ~ , c 0 S ( H k ) + C ~ , + C 1 C O S ( 6 1 k ) f C ~ C O S ( 2 ( j k ) + C g C O S ( 3 H k ) +  ... . (4.22) 
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(4.23) 
V,, = 0.028(U1,/10)1n(97U,,) m s-l 
C, = 0.11+0.25(U,,/10) s-', 
C, = -0.10+0.50(U,,/10)1'2 s-', c,,c,, ... z 0.01 s-'. 

The quantity V,, corresponds to the Stokes drift and can make a significant 
contribution to Qk (compare the discussion of this in Watson & McBride 1993). The 
k-dependence of c, and c1 is weak and was not taken into account in (4.23). 

To estimate the dynamic fluctuation in time arising from those Il within D,, we have 
used the output of a numerical evaluation of the action amplitudes (from integration 
of (2.31)) to calculate (4.21). This gave a time-fluctuating contribution of about 0.01 s-l 
to Qk, which seems negligible for our applications. 

Because of the small values of the coefficients in (4.23) we can therefore take as an 
adequate approximation for the pseudo-wave angular frequency 

Q k = w , + k . U ~ ' , , .  (4.24) 

4.2. Equations of motion 
The equations of motion for the pseudo-wave action amplitudes (4.3) are 

b k  = {pk, (4.25) 
Using (2.12) and (4.20), we obtain 

j k + i f 2 k p k  = 0, kEDR, (4.26) 
since the interactions in (4.20) involve only wave modes in DR. For wave modes in D, 
we obtain the equations 

b k  + iQk p k  = c [l / (324  % vm>11'2 {'k-1-p r(k>p, '1 p[pp 
I7P 

+ four-wave terms, all waves ED,. (4.27) 
For our present application to one surface dimension the discrete modes k,  I ,  . . . are 
specified by the first of equations (2.8). 

To reduce the number of modes in (4.27), we introduce again the grid (2.27), (2.28), 
and (2.29). The modes in both D,  and D,  form the set 

- 26k-l+p r(l, k , p )  pip,* + 'k+l+p h(l,p, k,  p? p,*> 

D,, = D,  n D,. 
Those modes in D,, but not in D,, form the set 

(4.28) 

D,, = D, n D,. (4.29) 

A special class of initial conditions at t = 0 is assumed for (4.27): 

pk(O) = O, DRS;  pk(O) = pk,, DRS,  (4.30) 
where pk0 is an assigned initial value. Because of the specific form of (2.27), integration 
of (4.27) will lead to (as was the case for (2.30)) 

pk(t) = 0, all t ,  kEDRS.  (4.3 1) 

We may thus ignore all amplitudes in DRS when integrating the equation set (4.27). 
This can clearly substantially reduce the computational burden for these equations. 

We emphasize that (4.30) represent initial conditions on the pseudo-wave, not on the 
physical wave, amplitudes. We are led to these initial conditions, noting that: (i) we 
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must be somewhat empirical in assigning initial conditions to the pseudo-waves ; (ii) for 
large systems with many degrees of freedom bulk properties tend to be largely 
independent of specific dynamic orbits (for example, the thermodynamic properties of 
a gas in a bottle seem very insensitive to the specifics of the molecular orbits) ; (iii) we 
can vary the fetch and the grid, which effectively changes the conditions (4.30). 

At this point it may be helpful to summarize our classification of wavenumber sets : 

D is the full set (2.8) in zs& 

D, is the triad resonance set, 
D ,  is the set not in D,, D,  U D, = D ,  
D, is the set (2.28), 
D ,  is the set not in (2.28), 
D,, = D, n D, is the subset of D, that is in D,, 
DRS is the set that is in D ,  but not in D,, 
D,, is the set that is in D ,  but not in D,. 

(4.32) 

For numerical evaluation of (4.27) it is convenient to replace the action amplitudes 

(4.33) 

by wave slope amplitudes ak, as in (2.19): 

p k -  - - i ( 4  V,/2)li2 ake-'"kt/k. 

The vertical pseudo-displacement of the water surface, expressed in terms of these slope 
amplitudes, is 

[(x, t )  = 1/(2k) [ak el(k.x-nkt) + c.c.1. 
k 

(4.34) 

Since we can ignore wave modes not in D,,, the reduced set of equations (4.27) 
expressed in terms of the cxk have a structure identical to (2.31): 

OiK+tl[ipa$ = e3T,(a;K)+e, T,(a;K).  (4.35) 

Because of special form of the nonlinear frequency shift (4.24), we have 

Qt,-Q,-Q2, = ( d K - w L - W p ,  

etc. in and 5, leaving these unchanged. Thus, the only difference from (2.3 1) is that 
now the modes K, L, P, . . ., are restricted to the set D,,, rather than the set D,. Since 
the number of modes in D,, may be substantially less than the number in D, a major 
reduction in computing time can be achieved. 

After integrating the equation set (4.39, we must obtain the physical wave 
amplitudes by integrating (4.18). To do this in the present paper we shall restrict 
ourselves to waves in one surface dimension and, as in $3, we also continue to restrict 
the waves in set D (2.8) to positive wavenumbers, k,, . . . > 0. 

In analogy to (4.33), we introduce generalized slope amplitudes with the relation 

Bk(h) = - i(& &/2)1'2 Ak(h) e-"kt/lk, (4.36) 

where Ak(l) = ak, Ak(0) = ake'(nk-'dkt) = - ak. (4.37) 

Here ak is defined by (2.19). We expect the frequency shift ( ~ ~ - 5 2 , )  to be significant 
only when there is a strong Stokes drift. The transformation (4.18) may now be written 
in the form 

(4.38) 
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With 1 = k - m , k , m  > 0, we obtain from (4.18) 
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The wavenumbers k,  FYI, 111 above are in set D (2.8). The sum in (4.38) is restricted to 
give allowed values of 1, which include the condition that 

A ,  = o ,  l < O .  

Since at least one of the three wavenumbers k,  m, 111 must lie in D,, we have the 
following possibilities : 

kED,, then II(ED,, and  ED;  ED,, then )I), mED. (4.40) 

Equations (4.38) are to be integrated from h = 1 to 0. The initial conditions on the 
A,(A) are (see (4.26) and (4.30)) 

(4.41) I A,(1) = 0, kED,,s, 

A,(1) is obtained from integration of (4.35) for  ED,,, 

A,(l) is assigned as an initial condition for k E  D,. 

As an illustration of our use of mode sets, let us consider grid G, of table 1 with 
A, = $ cm, S,  = 10 cm. The fetch X of 4 is taken as 60 cm. Then, there are 90 modes 
in D. The number of modes appearing in (4.39, i.e. in D,,, is 15. There are 5 modes 
in D,- and 70 in DRS. We thus need evaluate (4.35) for only 15 pseudo-wave modes 
and will have 90 physical wave mode amplitudes output from (4.38). 

In practice, the coupled equations in (4.38) are relatively simple and fast to integrate 
when the number of modes does not exceed a few hundred. (For the example just 
described having 90 complex amplitudes, (4.38) represent 180 coupled nonlinear 
equations. Integration time on a Macintosh computer was about 10 s.) A second-order 
Runge-Kutta scheme sufficed, but a Bulirsch-Stoer algorithm (Press et al. 1992) was 
faster and has been used for our calculations. We emphasize that (4.38) is not a 
dynamic equation in that time appears in it only as a parameter. 

Numerical integration of (4.38) is not practical, however, for a wind wave spectrum 
extending to wavelengths of tens of metres. Fortunately, an analytic approximation for 
the eiTects of these longer waves is available. To develop this, we suppose the area 4 
to be imbedded in a much larger area dL. The dimensions of 4 are chosen to give a 
practical set of modes for integration of (4.38) and A$, is assumed to include all waves 
in the wind wave spectrum. 

From the solution of (4.38), producing the mode amplitudes in 4, we can construct 
the complex surface displacement 

(4.42) 
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FIGURE 7. Illustration of Lie transform pairs. Heavy curve IS  transform of 20 cm wavelength wave 
of slope 0.3. Light curve is transform of 5 cm wave of slope 0.1 interacting with the longer wave. 

where { = -2 Im(Z), see (2.5). I t  is shown in Appendix B (equation (B 10)) that the 
effect of the longest waves is given by replacing (4.42) by 

(4.43) 

where Q(x)  is the horizontal fluid displacement due to orbital currents of the larger 
waves and (4.43) describes effects of advection and straining. We may assume linear 
waves for the evaluation of 9(.~). 

5. Applications of the Lie transform 

of wind waves using the Lie transform technique to increase the wave fetch. 

5.1. Lie trunsjorrn pairs 
The transform (4.38) associates with any pseudo-wave a corresponding physical wave, 
irrespective of the use of (4.35). We illustrate this with two simple examples. 

For these we use the grid G, of table 1 and set the fetch of 4, to X = 20 cm. For the 
first example, the pseudo-wave is a sine wave of wavelength 20 cm and slope 0.3. This 
wave is a member of the set D,. All other pseudo-waves have zero amplitude. In figure 
7 the surface displacement <, of the physical wave is shown by the heavy line. The 
sharpening of crests and flattening of troughs is a characteristic of the Lie transform 
(compare Creamer et al. 1989). 

For the second example, the pseudo-wave field is represented by the sum of two sine 
waves. The first is that used above, having a wavelength of 20 cm and a slope of 0.3. 
The second is a sine wave of 5 cm wavelength and slope of 0.1. The displacement of 
the resulting physical wave is written as 

where 85 represents the incremental effect of the shorter wave. The light curve in figure 
7 shows the quantity a{. The 5 cm wave, riding on the larger wave, is both modulated 
and subject to straining. 

In this section we continue the discussion begun in $3 of radiated capillary waves and 

5, = 5, + K, 
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FIGURE 8 (a-c). For caption see facing page. 
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FIGURE 8. The wave resulting from a pseudo-wave consisting of a 12 cm wavelength sine wave of 
slope 0.25 and a 16 cm sine wave of slope 0.05. Dissipation was assumed; (a, c) were calculated for 
three-wave interactions only, (b, d)  were calculated with both three- and four-wave interactions. 
Heavy curve is surface displacement and light curve is Fm filtered slope. Time is 0.2 s in (a, b) and 0.6 s 
in (c, d ) .  

5.2. Modulated sine wave 
We now consider a pseudo-wave system consisting at time t = 0 of a 12 cm wave-length 
sine wave of slope 0.25 and a 16 cm sine wave of slope 0.05. The area 4 has a fetch 
X = 48 cm. The grid G, of table 1 is used, so the shorter wave is in D, and the longer 
wave is in D,. Equations (4.35) were integrated with dissipation. For figure 8(a,  c) 
integration was done with only the three-wave interactions (el = F, = 1, c4 = 0). For 
figure 8(6, d )  both three- and four-wave interactions were used (el = c3 = c4 = 1). 
In figure 8 the heavy curves represent surface displacement and the light curves Fm 
filtered slope. 

The time for figure 8(a,  6) is t = 0.2 s. The surface roughness tends to be ahead of 
the longer wave crests ; this is more pronounced in figure 8 (b) with the use of the four- 
wave term q. The four-wave term also leads to slightly enhanced roughness, a result 
we observed in $3. 

For figure 8 (c ,  d )  the time is 0.6 s. The surface roughness is now more centred under 
the long wave crests, otherwise figure 8(c) appears much like figure S(a). We see in 
figure 8 ( d )  that the four-wave interaction has led to greater roughness in the wave 
troughs. 

Continuing the calculation to later times shows a gradual increase in the contribution 
from the four-wave interactions. Comparison of surface displacement shows crest 
sharpening that is quite similar for the three-wave and three- and four-wave cases, 
however. 

Figure 8(a)  is similar to figure 2(6), except that in figure 8(a)  the fine-scale slope 
amplitude is greater and is modulated by the crest height of the longer wave. The Lie 
transform tends to enhance longer wave crests. Because of the small slope (i.e. 0.05) of 
the longer wave in figure 8, modulation effects are relatively weak. This is in contrast 
to the case shown in figure 2(c), for which the modulating wave is very steep. 

We again consider the wave system that was studied in figure 8, except that we now 
vary the amplitude of the 12 cm wave. The slope of the 16 cm wave remains constant 



114 K. M .  Watson and S.  B. Buchsbaum 

0 0.1 0.2 0.3 
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FIGURE 9. Illustration of r.m.s. F, filtered slope near crests, i.e. crest roughness, as a function of the 
slope of a 12 cm wavelength sine wave interacting with a 16 cm sine wave of fixed slope = 0.05. 

at 0.05. We calculate, with dissipation and using three- and four-wave interactions 
(e,  = e, = e4 = l), the fine-scale roughness as the r.1n.s. F, filtered slope averaged over 
spatial intervals for which the surface displacement is positive. We show this as crest 
roughness us. 12 cm wave lope in figure 9. 

5.3. Wind waves 
We now consider wave amplitudes initiated by the Donelan-Pierson (1 987) spectrum 
and given random phases, as described in $3. We again interpret these initial conditions 
as applying to pseudo-waves. We first produce in this manner a set of initial values for 
those aK for which K is in DRs. With these we integrate (4.35) to produce at time t the 
amplitudes 

(see (4.41)). For those kED,  we again use the Donelan-Pierson spectrum and the 
(5.1) A,(1) = a,(t), kED,,  

random phase generator to-give A,(l). For the remaining amplitudes we have, 
according to (4.41), A,(l) = 0, ICEDRS. 

We shall calculate the capillary spectrum for a wind speed of 4 m s-l, choosing the 
grid G, of table 1 and the fetch of the area 4 as X = 48 cm. The spectrum for U,, = 
4 m s-l extends to wavelengths h M 10 m. To account for these longest waves, we 
consider (as described in $4) the area do to be imbedded in a much larger area dL. We 
suppose the fetch of dL to be X ,  = JL X ,  
where JL is an integer (compare (2.27)) and X, + 10 m is large enough to include the 
entire wind wave spectrum. The relation (5.2) lets us assume that the wave modes in 
4 are also modes of the set D, in 4 (although sparse in the larger area). The wave 
amplitudes that are in D, and have wavelengths less than X, but are not in D, are set 
equal to zero at time t = 0 and because JL is an integer these remains zero until the long- 
wave part of the inverse Lie transformation is performed (Appendix B). 

The Donelan-Pierson spectrum and a random number generator are used to provide 
initial pseudo-wave amplitudes. Integration of (4.35) and (4.38) provides the physical 
wave amplitudes in D. From these we can calculate the complex displacement Z(x) ,  see 
(4.42). 

(5.2) 
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FIGURE 10. Wave spectrum B at t = 0.3 s for a wind speed of 4 m ssl. Calculation was done with 
dissipation. The light curve shows the spectrum using only the three-wave interactions. The heavy 
curve shows the spectrum using both the three- and four-wave interactions. 

The horizontal displacement 9(x) (see (B 6)) may be expressed as 

Q(x) = - C [a, ei(z”-‘dlt) -c.c.]/(2il), (5.3) 
I 

where the sum is over wave modes in DL,  but with wavelengths significantly larger than 
X .  We assume that the a, represent Gaussian variables with mean-square magnitudes 
given by the Donelan-Pierson spectrum. With the quantity (5.3) we can evaluate (4.43). 

The Fourier transform of Z(.u), (4.43), in D ,  is 
r r  

where k is a wavenumber in D,. The displacement spectrum Y(k ,  0) in the downwind 
direction is given by 

(5 .5)  
where (. . implies an ensemble average over the long-wave modes in gL and ALK 
represents a wavenumber interval in D,. On following the similar argument of Watson 
& McBride (1993), we obtain 

Here the d, are defined by (4.37), the p are wavenumbers in the set D ,  the k are 
members of the set D,, and 

C(x-I’) = C(y-x )  = ( 9 ( X ) 9 ( y ) ) L M . .  (5.7) 
As a final step we average the quantity (5.6) over five realizations of the d,. 

In figure 10 we show as the light curve the dimensionless spectrum B = K 4 Y ,  as 
calculated from (5.6). The initial amplitude data of figure 5(a)  were used. The time is 
t = 0.3 s, dissipation was assumed and the four-wave term was not used (el = e3 = 1, 
t4 = 0). The calculation was repeated with the same input data set, but with both the 
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three- and four-wave interactions (el = c3 = c4 = 1). The resulting spectrum at t = 0.3 s 
is shown as the heavy curve in figure 10. Comparison of the two curves shows only 
modest effects of the four-wave interactions. We note that the dense set of k-values and 
the smoothing effect in (5.6) permits plotting the spectra in figure 10 as continuous 
curves. 

In Part 2 of this work the discussion of wind waves and of surface roughness will be 
extended to two surface dimensions. 

6. Conclusions 
In $3 we calculated properties of three kinds of wave systems, beginning with the 

rather simple Wilton triad. Perhaps the most significant observation from these 
calculations is the role of triad resonances, as evidenced by the dependence on&,, 
(2.40). The values required for him were too large to justify a simple triad resonance 
model, such as that of the Hasselmann theory. Important channels for energy flow 
occur away from triad resonance regions, as was evidenced from the simple example 
of the Wilton harmonic triad and from the calculation of wind wave spectra. On the 
other hand, values off,im as large as the maximum possible resonance mismatch were 
not required. The minimum required values of him for the four-wave terms were 
roughly one-half the values required for the three-wave terms. Significant effects 
resulting from off-resonant triad interactions have also been found by Freilich & Guza 
(1984) in their study of gravity waves in shallow water. 

We saw that off-resonance interactions were found to lead to significant corrections 
to the Hasselmann method. Energy transfer to the capillary spectrum occurred over a 
broader spectral domain than that resulting from triad resonance mechanisms alone. 
The total energy transfer rates, as shown in table 2, were in order of magnitude 
agreement, however. 

We saw that ripples of a few millimetres wavelength tend to be on the forward face 
of steep waves, but that those in the centimetre range tend to be more nearly coincident 
with the wave crests. Modulation of these waves by waves of larger wavelength can 
change this ripple structure. The variation of crest roughness with wave slope was 
illustrated in figure 9. 

Calculations were compared using only the three-wave interactions and using the 
three- and four-wave interactions. For the fast time scales of capillary wave phenomena 
the three-wave terms only gave results that were generally qualitatively, or semi- 
quantitatively, consistent with those calculated using three- and four-wave interactions. 
Additional fine-scale waves generated by the four-wave interactions were seen to cause 
an interference pattern for the three-wave-generated fine-scale waves. 

We have adopted for this work a rather inefficient specification for the resonant 
domain D,. This was done in the interest of simplicity and also because for our 
applications to one-dimensional waves a more efficient calculation was not needed. 
The great majority of the three-wave interaction terms in (2.3 1) are far from resonance 
and could have been transformed out of (2.31) by the canonical transformation. 
Keeping these terms adds to the computational burden in two ways: first, we have had 
to numerically evaluate unnecessary interaction terms ; second, these terms, being far 
from a triad resonance have rapidly oscillating exponentials that slow numerical 
integration. (When the Kolmogorov technique is extended one more order to the four- 
wave terms, similar considerations apply.) When we investigate in Part 2 wave 
phenomena in two surface dimensions, we shall have need for a more efficient choice 
of resonance domains and will then address this issue. 
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Appendix A. Interaction with the external environment 

can give to it, or extract from it, energy. The total Hamiltonian will be of the form 
We imagine the wave system to be in interaction with a large-scale 'heat bath' that 

XT = X(J,  8) + XXJ, 8, Z ) ,  (A 1 )  
where X is given by (2.13, XE represents the coupling of the external environment, 
and Z represents external degrees of freedom. The canonical transformation is carried 
out as in $4: 

The resulting Hamiltonian is 

J+P(h)+I,  O+ Q ( A ) -  $, Z+Z+Z. (A 2) 

(A 3 )  Hq- = H(I, $1 + f f E ( I 9  $ 5  z>. 
Equations (4.25) for the pseudo-wave amplitudes are now of the form 

We use the second term as a phenomenological source for energy input from the wind 
(with a Miles 1957 model, for example) and/or sink for energy loss due to viscous 
dissipation. 

Appendix B. Simplification of Lie transform for long waves 
As was described in $4, the Lie transformation equations are impractical to integrate 

numerically for a very broad spectrum. A useful analytic approximation that removes 
this restriction can be developed for (4.18) for this case. 

First, we recall from the work of Creamer et al. (1989) and Watson & McBride 
(1993) that the Lie transformation has a relatively weak effect on the longer gravity 
waves. Thus, we assume that 

for these longer waves. We may therefore analyse (4.18) for only those k that are in the 
M 1 )  = Bl(0) (B 1) 

capillary and short gravity wave range. This suggests 
form 

where g,(k) contains those terms on the right in (4.18 
this as I )  much less in magnitude than k. 

hat we can rewrite (4.18) in the 

(B 2) 

that have a wavenumber (label 

Creamer et al. (1989) an; Watson & McBride (1993) showed that the form of go can 
be written as 
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The remaining terms in (4.18) are included in g,. Now Watson & McBride (1993) 
observed that 

g,(x) = C eik."g,(k)/(24 &)1/2 z 9(x). VZ(x), (B 4) 
k 

where Z(x) = C eik." Bk/(24 J$)l'' 

k 

and 9= -C i[Blei1."+c.c.]/(24 ?)l/'. (B 6) 
1 

We note from (2.5) that the vertical displacement of the surface is 

<(x) = - 2 Im (Z(x)), h = 0, 
and also note that at h = 0 $3 corresponds (in the linear wave approximation) to the 
horizontal fluid displacement due to the orbital current. 

If we were to neglect the term g, in (B 2), we would have an equation of the form 

where gy is g, with Bk replaced by B!, which represents the solution of (B 7). We note 
that (B 7) is unchanged by a phase shift of the form 

B; + eik.d B:, 
corresponding to a displacement d in x-space. 

showed that the expression 
Now, following the work of Creamer et al. (1989), Watson & McBride (1993) 

Y(u) = eik." ck 
k 

is a solution of the equation 
ay 
- = 9.v Y 
ah 

if u = x+(h-l)@u) (B 9) 
and ck does not depend on A. (The solution (B9) depends on the scale separation 
I < k and is valid up to first order in 1091.) We see now that the required solution to 
(B 2) is, in x-space, 

That is, 

The second term in (B 11) is of the form (B 8) and this is just the expression (B 4). We 
use (B 7) and the invariance under a phase shift to see that the first term in (B 11) is 
just the first term in (B 2). (We use again the condition of scale separation to argue that 
$3 is effectively constant over the short-wavelength waves.) The anticipated weak 
dependence of the long waves on the Lie transformation lets us use (B 1) to set 

9 ( u )  z5 9(x). (B 12) 
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To integrate equations (4.18) for the inverse Lie transformation, we must first decide 
at what wavenumbers to make the scale separation implied in (B 2). We must next 
integrate (B 7). which we shall find to be much simpler than the full set (4.18). Finally, 
the effect of g,, of (B 3) is accounted for in the analytic expression (B 10). When (B 7) 
is re-expressed in terms of the slope variables of (4.36), it becomes (4.38). 
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